博客
关于我
数据增强--对于目标检测(边框、图像)
阅读量:559 次
发布时间:2019-03-09

本文共 6607 字,大约阅读时间需要 22 分钟。

import torchfrom PIL import Image, ImageFont, ImageDrawfrom functools import reduceimport scipy.io as sciofrom PIL import Imageimport cv2 as cvimport numpy as npimport randomimport imutilsfrom imgaug import augmenters as iaadef horisontal_flip(images, targets):    images = torch.flip(images, [-1])    targets[:, 2] = 1 - targets[:, 2]    return images, targetsdef compose(*funcs):    """Compose arbitrarily many functions, evaluated left to right.    Reference: https://mathieularose.com/function-composition-in-python/    """    # return lambda x: reduce(lambda v, f: f(v), funcs, x)    if funcs:        return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)    else:        raise ValueError('Composition of empty sequence not supported.')def letterbox_image(image, size):    '''resize image with unchanged aspect ratio using padding'''    iw, ih = image.size    w, h = size    scale = min(w / iw, h / ih)    nw = int(iw * scale)    nh = int(ih * scale)    image = image.resize((nw, nh), Image.BICUBIC)    new_image = Image.new('RGB', size, (128, 128, 128))    new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))    return new_imagedef rand(a=0, b=1):    return np.random.rand() * (b - a) + adef resize_3D_data(ima, size=(416, 416)):    dat = np.zeros([416, 416, 15])    for i in range(15):        slice = np.squeeze(ima[:, :, i])        re_slice = cv.resize(slice.astype('uint8'), size, interpolation=cv.INTER_AREA)        dat[:, :, i] = re_slice    return datdef random_crop(cell, boxes):    dx = random.randint(15, 20)    dy = random.randint(15, 20)    shape = cell.shape    nx = shape[0]    ny = shape[1]    boxes[:, [0, 2]] = boxes[:, [0, 2]] - dx    boxes[:, [1, 3]] = boxes[:, [1, 3]] - dy    new_cell = np.zeros_like(cell)    new_cell[0:int(nx - dx), 0:int(ny - dy)] = cell[dx:, dy:]    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    boxes = np.where(boxes < 0, 0, boxes)    return new_cell, boxesdef random_noise(cell, boxes):    image = Image.fromarray(cell.astype('uint8')).convert('RGB')    image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    seq = iaa.Sequential(        [            iaa.AdditiveGaussianNoise(scale=0.05 * 255),            iaa.LinearContrast((0.75, 1.5)),            iaa.GaussianBlur(sigma=(0, 4.0)),            iaa.Dropout(p=(0, 0.2)),            iaa.CoarseDropout(0.02, size_percent=0.5)        ], random_order=True    )    images_aug = seq.augment_images([image])[0]    new_cell = Image.fromarray(cv.cvtColor(images_aug, cv.COLOR_BGR2RGB))    return new_cell, boxesdef gray_level_crop(cell, boxes):    max_val = random.randint(80, 255) / 255    new_cell = cell * max_val    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, boxesdef rotate_box(box, M, shape):    # print(box)    y1, x1, y2, x2 = box    p1 = np.array([x1, y1, 1]).reshape((3, 1))    p2 = np.array([x1, y2, 1]).reshape((3, 1))    p3 = np.array([x2, y2, 1]).reshape((3, 1))    p4 = np.array([x2, y1, 1]).reshape((3, 1))    p1 = np.matmul(M, p1)    p2 = np.matmul(M, p2)    p3 = np.matmul(M, p3)    p4 = np.matmul(M, p4)    x1 = np.min([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    x2 = np.max([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    y1 = np.min([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    y2 = np.max([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    if x1 < 0:        x1 = 0    if x1 > shape[1]:        x1 = shape[1] - 1    if x2 < 0:        x2 = 0    if x2 > shape[1]:        x2 = shape[1] - 1    if y1 < 0:        y1 = 0    if y1 > shape[0]:        y1 = shape[0] - 1    if y2 < 0:        y2 = 0    if y2 > shape[0]:        y2 = shape[0] - 1    box = [y1, x1, y2, x2]    # print(box)    # print('--------------')    return boxdef random_rotate(cell, boxes, angle=45):    (h, w) = cell.shape    (cX, cY) = (w // 2, h // 2)    new_cell = imutils.rotate_bound(cell.astype('uint8'), angle)    M = cv.getRotationMatrix2D((cX, cY), -angle, 1.0)    cos = np.abs(M[0, 0])    sin = np.abs(M[0, 1])    # compute the new bounding dimensions of the image    nW = int((h * sin) + (w * cos))    nH = int((h * cos) + (w * sin))    # adjust the rotation matrix to take into account translation    M[0, 2] += (nW / 2) - cX    M[1, 2] += (nH / 2) - cY    new_boxes = []    for i in range(len(boxes)):        new_boxes.append(rotate_box(boxes[i], M, new_cell.shape))    if len(new_boxes) > 0:        new_boxes = np.array(new_boxes)    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, new_boxesdef random_argument(data, cell, boxes):    # crop region ...    if rand() < .5:        cell, boxes = random_crop(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = random_noise(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = gray_level_crop(cell, boxes)    # rotate ...    if rand() < .5:       cell, boxes = random_rotate(cell, boxes, random.randint(0, 90))    return cell, boxesdef pad_to_square(img, pad_value):    h, w, c = img.shape    dim_diff = np.abs(h - w)    # (upper / left) padding and (lower / right) padding    pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2    # Determine padding    pad = ((0, 0), (pad1, pad2), (0, 0)) if w <= h else ((pad1, pad2), (0, 0), (0, 0))    # Add padding    img = np.pad(img, pad, "constant", constant_values=pad_value)    return img, padif __name__ == '__main__':    dat = scio.loadmat(        '/home/xuxu/Data/CTC_Signal_Datasets/Processed/20200616_cell_signalmark_39frames/Green/653802_650142_0_675.mat')    cell = dat['signal'].astype('uint8')    boxe = dat['rects']    print('boxe', boxe)    # image = Image.fromarray(cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    # for x1, y1, x2, y2 in boxes:    #     cv.rectangle(image, (y1, x1), (y2, x2), (255, 255, 255), thickness=1)    # cv.imwrite('1.jpg', image)    new_cell, new_boxes = random_rotate(cell, boxe)    # new_cell, new_boxes = gray_level_crop(cell, boxe)    # print('new_boxes', new_boxes)    # new_boxes = np.where(new_boxes < 0, 0, new_boxes)    # print('new_boxes', new_boxes)    # image = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    for x1, y1, x2, y2 in new_boxes:        cv.rectangle(new_cell, (int(y1), int(x1)), (int(y2), int(x2)), (255, 255, 255), thickness=1)    cv.imwrite('1.jpg', new_cell)

其中图像加噪使用的是imgaug库

转载地址:http://ewhsz.baihongyu.com/

你可能感兴趣的文章
MySQL中的关键字深入比较:UNION vs UNION ALL
查看>>
mysql中的四大运算符种类汇总20多项,用了三天三夜来整理的,还不赶快收藏
查看>>
mysql中的字段如何选择合适的数据类型呢?
查看>>
MySQL中的字符集陷阱:为何避免使用UTF-8
查看>>
mysql中的数据导入与导出
查看>>
MySQL中的时间函数
查看>>
mysql中的约束
查看>>
MySQL中的表是什么?
查看>>
mysql中穿件函数时候delimiter的用法
查看>>
Mysql中索引的分类、增删改查与存储引擎对应关系
查看>>
Mysql中索引的最左前缀原则图文剖析(全)
查看>>
MySql中给视图添加注释怎么添加_默认不支持_可以这样取巧---MySql工作笔记002
查看>>
Mysql中获取所有表名以及表名带时间字符串使用BetweenAnd筛选区间范围
查看>>
Mysql中视图的使用以及常见运算符的使用示例和优先级
查看>>
Mysql中触发器的使用示例
查看>>
Mysql中设置只允许指定ip能连接访问(可视化工具的方式)
查看>>
mysql中还有窗口函数?这是什么东西?
查看>>
mysql中间件
查看>>
MYSQL中频繁的乱码问题终极解决
查看>>
MySQL为Null会导致5个问题,个个致命!
查看>>