博客
关于我
数据增强--对于目标检测(边框、图像)
阅读量:559 次
发布时间:2019-03-09

本文共 6607 字,大约阅读时间需要 22 分钟。

import torchfrom PIL import Image, ImageFont, ImageDrawfrom functools import reduceimport scipy.io as sciofrom PIL import Imageimport cv2 as cvimport numpy as npimport randomimport imutilsfrom imgaug import augmenters as iaadef horisontal_flip(images, targets):    images = torch.flip(images, [-1])    targets[:, 2] = 1 - targets[:, 2]    return images, targetsdef compose(*funcs):    """Compose arbitrarily many functions, evaluated left to right.    Reference: https://mathieularose.com/function-composition-in-python/    """    # return lambda x: reduce(lambda v, f: f(v), funcs, x)    if funcs:        return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)    else:        raise ValueError('Composition of empty sequence not supported.')def letterbox_image(image, size):    '''resize image with unchanged aspect ratio using padding'''    iw, ih = image.size    w, h = size    scale = min(w / iw, h / ih)    nw = int(iw * scale)    nh = int(ih * scale)    image = image.resize((nw, nh), Image.BICUBIC)    new_image = Image.new('RGB', size, (128, 128, 128))    new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))    return new_imagedef rand(a=0, b=1):    return np.random.rand() * (b - a) + adef resize_3D_data(ima, size=(416, 416)):    dat = np.zeros([416, 416, 15])    for i in range(15):        slice = np.squeeze(ima[:, :, i])        re_slice = cv.resize(slice.astype('uint8'), size, interpolation=cv.INTER_AREA)        dat[:, :, i] = re_slice    return datdef random_crop(cell, boxes):    dx = random.randint(15, 20)    dy = random.randint(15, 20)    shape = cell.shape    nx = shape[0]    ny = shape[1]    boxes[:, [0, 2]] = boxes[:, [0, 2]] - dx    boxes[:, [1, 3]] = boxes[:, [1, 3]] - dy    new_cell = np.zeros_like(cell)    new_cell[0:int(nx - dx), 0:int(ny - dy)] = cell[dx:, dy:]    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    boxes = np.where(boxes < 0, 0, boxes)    return new_cell, boxesdef random_noise(cell, boxes):    image = Image.fromarray(cell.astype('uint8')).convert('RGB')    image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    seq = iaa.Sequential(        [            iaa.AdditiveGaussianNoise(scale=0.05 * 255),            iaa.LinearContrast((0.75, 1.5)),            iaa.GaussianBlur(sigma=(0, 4.0)),            iaa.Dropout(p=(0, 0.2)),            iaa.CoarseDropout(0.02, size_percent=0.5)        ], random_order=True    )    images_aug = seq.augment_images([image])[0]    new_cell = Image.fromarray(cv.cvtColor(images_aug, cv.COLOR_BGR2RGB))    return new_cell, boxesdef gray_level_crop(cell, boxes):    max_val = random.randint(80, 255) / 255    new_cell = cell * max_val    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, boxesdef rotate_box(box, M, shape):    # print(box)    y1, x1, y2, x2 = box    p1 = np.array([x1, y1, 1]).reshape((3, 1))    p2 = np.array([x1, y2, 1]).reshape((3, 1))    p3 = np.array([x2, y2, 1]).reshape((3, 1))    p4 = np.array([x2, y1, 1]).reshape((3, 1))    p1 = np.matmul(M, p1)    p2 = np.matmul(M, p2)    p3 = np.matmul(M, p3)    p4 = np.matmul(M, p4)    x1 = np.min([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    x2 = np.max([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    y1 = np.min([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    y2 = np.max([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    if x1 < 0:        x1 = 0    if x1 > shape[1]:        x1 = shape[1] - 1    if x2 < 0:        x2 = 0    if x2 > shape[1]:        x2 = shape[1] - 1    if y1 < 0:        y1 = 0    if y1 > shape[0]:        y1 = shape[0] - 1    if y2 < 0:        y2 = 0    if y2 > shape[0]:        y2 = shape[0] - 1    box = [y1, x1, y2, x2]    # print(box)    # print('--------------')    return boxdef random_rotate(cell, boxes, angle=45):    (h, w) = cell.shape    (cX, cY) = (w // 2, h // 2)    new_cell = imutils.rotate_bound(cell.astype('uint8'), angle)    M = cv.getRotationMatrix2D((cX, cY), -angle, 1.0)    cos = np.abs(M[0, 0])    sin = np.abs(M[0, 1])    # compute the new bounding dimensions of the image    nW = int((h * sin) + (w * cos))    nH = int((h * cos) + (w * sin))    # adjust the rotation matrix to take into account translation    M[0, 2] += (nW / 2) - cX    M[1, 2] += (nH / 2) - cY    new_boxes = []    for i in range(len(boxes)):        new_boxes.append(rotate_box(boxes[i], M, new_cell.shape))    if len(new_boxes) > 0:        new_boxes = np.array(new_boxes)    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, new_boxesdef random_argument(data, cell, boxes):    # crop region ...    if rand() < .5:        cell, boxes = random_crop(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = random_noise(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = gray_level_crop(cell, boxes)    # rotate ...    if rand() < .5:       cell, boxes = random_rotate(cell, boxes, random.randint(0, 90))    return cell, boxesdef pad_to_square(img, pad_value):    h, w, c = img.shape    dim_diff = np.abs(h - w)    # (upper / left) padding and (lower / right) padding    pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2    # Determine padding    pad = ((0, 0), (pad1, pad2), (0, 0)) if w <= h else ((pad1, pad2), (0, 0), (0, 0))    # Add padding    img = np.pad(img, pad, "constant", constant_values=pad_value)    return img, padif __name__ == '__main__':    dat = scio.loadmat(        '/home/xuxu/Data/CTC_Signal_Datasets/Processed/20200616_cell_signalmark_39frames/Green/653802_650142_0_675.mat')    cell = dat['signal'].astype('uint8')    boxe = dat['rects']    print('boxe', boxe)    # image = Image.fromarray(cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    # for x1, y1, x2, y2 in boxes:    #     cv.rectangle(image, (y1, x1), (y2, x2), (255, 255, 255), thickness=1)    # cv.imwrite('1.jpg', image)    new_cell, new_boxes = random_rotate(cell, boxe)    # new_cell, new_boxes = gray_level_crop(cell, boxe)    # print('new_boxes', new_boxes)    # new_boxes = np.where(new_boxes < 0, 0, new_boxes)    # print('new_boxes', new_boxes)    # image = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    for x1, y1, x2, y2 in new_boxes:        cv.rectangle(new_cell, (int(y1), int(x1)), (int(y2), int(x2)), (255, 255, 255), thickness=1)    cv.imwrite('1.jpg', new_cell)

其中图像加噪使用的是imgaug库

转载地址:http://ewhsz.baihongyu.com/

你可能感兴趣的文章
MySQL5.6的zip包安装教程
查看>>
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
Webpack 基本环境搭建
查看>>
mysql5.7 安装版 表不能输入汉字解决方案
查看>>
MySQL5.7.18主从复制搭建(一主一从)
查看>>
MySQL5.7.19-win64安装启动
查看>>
mysql5.7.19安装图解_mysql5.7.19 winx64解压缩版安装配置教程
查看>>
MySQL5.7.37windows解压版的安装使用
查看>>
mysql5.7免费下载地址
查看>>
mysql5.7命令总结
查看>>
mysql5.7安装
查看>>
mysql5.7性能调优my.ini
查看>>
MySQL5.7新增Performance Schema表
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Webpack 之 basic chunk graph
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>
mysql5.7的安装和Navicat的安装
查看>>
mysql5.7示例数据库_Linux MySQL5.7多实例数据库配置
查看>>
Mysql8 数据库安装及主从配置 | Spring Cloud 2
查看>>
mysql8 配置文件配置group 问题 sql语句group不能使用报错解决 mysql8.X版本的my.cnf配置文件 my.cnf文件 能够使用的my.cnf配置文件
查看>>