博客
关于我
数据增强--对于目标检测(边框、图像)
阅读量:559 次
发布时间:2019-03-09

本文共 6607 字,大约阅读时间需要 22 分钟。

import torchfrom PIL import Image, ImageFont, ImageDrawfrom functools import reduceimport scipy.io as sciofrom PIL import Imageimport cv2 as cvimport numpy as npimport randomimport imutilsfrom imgaug import augmenters as iaadef horisontal_flip(images, targets):    images = torch.flip(images, [-1])    targets[:, 2] = 1 - targets[:, 2]    return images, targetsdef compose(*funcs):    """Compose arbitrarily many functions, evaluated left to right.    Reference: https://mathieularose.com/function-composition-in-python/    """    # return lambda x: reduce(lambda v, f: f(v), funcs, x)    if funcs:        return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)    else:        raise ValueError('Composition of empty sequence not supported.')def letterbox_image(image, size):    '''resize image with unchanged aspect ratio using padding'''    iw, ih = image.size    w, h = size    scale = min(w / iw, h / ih)    nw = int(iw * scale)    nh = int(ih * scale)    image = image.resize((nw, nh), Image.BICUBIC)    new_image = Image.new('RGB', size, (128, 128, 128))    new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))    return new_imagedef rand(a=0, b=1):    return np.random.rand() * (b - a) + adef resize_3D_data(ima, size=(416, 416)):    dat = np.zeros([416, 416, 15])    for i in range(15):        slice = np.squeeze(ima[:, :, i])        re_slice = cv.resize(slice.astype('uint8'), size, interpolation=cv.INTER_AREA)        dat[:, :, i] = re_slice    return datdef random_crop(cell, boxes):    dx = random.randint(15, 20)    dy = random.randint(15, 20)    shape = cell.shape    nx = shape[0]    ny = shape[1]    boxes[:, [0, 2]] = boxes[:, [0, 2]] - dx    boxes[:, [1, 3]] = boxes[:, [1, 3]] - dy    new_cell = np.zeros_like(cell)    new_cell[0:int(nx - dx), 0:int(ny - dy)] = cell[dx:, dy:]    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    boxes = np.where(boxes < 0, 0, boxes)    return new_cell, boxesdef random_noise(cell, boxes):    image = Image.fromarray(cell.astype('uint8')).convert('RGB')    image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    seq = iaa.Sequential(        [            iaa.AdditiveGaussianNoise(scale=0.05 * 255),            iaa.LinearContrast((0.75, 1.5)),            iaa.GaussianBlur(sigma=(0, 4.0)),            iaa.Dropout(p=(0, 0.2)),            iaa.CoarseDropout(0.02, size_percent=0.5)        ], random_order=True    )    images_aug = seq.augment_images([image])[0]    new_cell = Image.fromarray(cv.cvtColor(images_aug, cv.COLOR_BGR2RGB))    return new_cell, boxesdef gray_level_crop(cell, boxes):    max_val = random.randint(80, 255) / 255    new_cell = cell * max_val    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, boxesdef rotate_box(box, M, shape):    # print(box)    y1, x1, y2, x2 = box    p1 = np.array([x1, y1, 1]).reshape((3, 1))    p2 = np.array([x1, y2, 1]).reshape((3, 1))    p3 = np.array([x2, y2, 1]).reshape((3, 1))    p4 = np.array([x2, y1, 1]).reshape((3, 1))    p1 = np.matmul(M, p1)    p2 = np.matmul(M, p2)    p3 = np.matmul(M, p3)    p4 = np.matmul(M, p4)    x1 = np.min([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    x2 = np.max([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    y1 = np.min([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    y2 = np.max([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    if x1 < 0:        x1 = 0    if x1 > shape[1]:        x1 = shape[1] - 1    if x2 < 0:        x2 = 0    if x2 > shape[1]:        x2 = shape[1] - 1    if y1 < 0:        y1 = 0    if y1 > shape[0]:        y1 = shape[0] - 1    if y2 < 0:        y2 = 0    if y2 > shape[0]:        y2 = shape[0] - 1    box = [y1, x1, y2, x2]    # print(box)    # print('--------------')    return boxdef random_rotate(cell, boxes, angle=45):    (h, w) = cell.shape    (cX, cY) = (w // 2, h // 2)    new_cell = imutils.rotate_bound(cell.astype('uint8'), angle)    M = cv.getRotationMatrix2D((cX, cY), -angle, 1.0)    cos = np.abs(M[0, 0])    sin = np.abs(M[0, 1])    # compute the new bounding dimensions of the image    nW = int((h * sin) + (w * cos))    nH = int((h * cos) + (w * sin))    # adjust the rotation matrix to take into account translation    M[0, 2] += (nW / 2) - cX    M[1, 2] += (nH / 2) - cY    new_boxes = []    for i in range(len(boxes)):        new_boxes.append(rotate_box(boxes[i], M, new_cell.shape))    if len(new_boxes) > 0:        new_boxes = np.array(new_boxes)    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, new_boxesdef random_argument(data, cell, boxes):    # crop region ...    if rand() < .5:        cell, boxes = random_crop(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = random_noise(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = gray_level_crop(cell, boxes)    # rotate ...    if rand() < .5:       cell, boxes = random_rotate(cell, boxes, random.randint(0, 90))    return cell, boxesdef pad_to_square(img, pad_value):    h, w, c = img.shape    dim_diff = np.abs(h - w)    # (upper / left) padding and (lower / right) padding    pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2    # Determine padding    pad = ((0, 0), (pad1, pad2), (0, 0)) if w <= h else ((pad1, pad2), (0, 0), (0, 0))    # Add padding    img = np.pad(img, pad, "constant", constant_values=pad_value)    return img, padif __name__ == '__main__':    dat = scio.loadmat(        '/home/xuxu/Data/CTC_Signal_Datasets/Processed/20200616_cell_signalmark_39frames/Green/653802_650142_0_675.mat')    cell = dat['signal'].astype('uint8')    boxe = dat['rects']    print('boxe', boxe)    # image = Image.fromarray(cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    # for x1, y1, x2, y2 in boxes:    #     cv.rectangle(image, (y1, x1), (y2, x2), (255, 255, 255), thickness=1)    # cv.imwrite('1.jpg', image)    new_cell, new_boxes = random_rotate(cell, boxe)    # new_cell, new_boxes = gray_level_crop(cell, boxe)    # print('new_boxes', new_boxes)    # new_boxes = np.where(new_boxes < 0, 0, new_boxes)    # print('new_boxes', new_boxes)    # image = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    for x1, y1, x2, y2 in new_boxes:        cv.rectangle(new_cell, (int(y1), int(x1)), (int(y2), int(x2)), (255, 255, 255), thickness=1)    cv.imwrite('1.jpg', new_cell)

其中图像加噪使用的是imgaug库

转载地址:http://ewhsz.baihongyu.com/

你可能感兴趣的文章
Mysql中怎样设置指定ip远程访问连接
查看>>
mysql中数据表的基本操作很难嘛,由这个实验来带你从头走一遍
查看>>
Mysql中文乱码问题完美解决方案
查看>>
mysql中的 +号 和 CONCAT(str1,str2,...)
查看>>
Mysql中的 IFNULL 函数的详解
查看>>
mysql中的collate关键字是什么意思?
查看>>
MySql中的concat()相关函数
查看>>
mysql中的concat函数,concat_ws函数,concat_group函数之间的区别
查看>>
MySQL中的count函数
查看>>
MySQL中的DB、DBMS、SQL
查看>>
MySQL中的DECIMAL类型:MYSQL_TYPE_DECIMAL与MYSQL_TYPE_NEWDECIMAL详解
查看>>
MySQL中的GROUP_CONCAT()函数详解与实战应用
查看>>
MySQL中的IO问题分析与优化
查看>>
MySQL中的ON DUPLICATE KEY UPDATE详解与应用
查看>>
mysql中的rbs,SharePoint RBS:即使启用了RBS,内容数据库也在不断增长
查看>>
mysql中的undo log、redo log 、binlog大致概要
查看>>
Mysql中的using
查看>>
MySQL中的关键字深入比较:UNION vs UNION ALL
查看>>
mysql中的四大运算符种类汇总20多项,用了三天三夜来整理的,还不赶快收藏
查看>>
mysql中的字段如何选择合适的数据类型呢?
查看>>