博客
关于我
数据增强--对于目标检测(边框、图像)
阅读量:559 次
发布时间:2019-03-09

本文共 6607 字,大约阅读时间需要 22 分钟。

import torchfrom PIL import Image, ImageFont, ImageDrawfrom functools import reduceimport scipy.io as sciofrom PIL import Imageimport cv2 as cvimport numpy as npimport randomimport imutilsfrom imgaug import augmenters as iaadef horisontal_flip(images, targets):    images = torch.flip(images, [-1])    targets[:, 2] = 1 - targets[:, 2]    return images, targetsdef compose(*funcs):    """Compose arbitrarily many functions, evaluated left to right.    Reference: https://mathieularose.com/function-composition-in-python/    """    # return lambda x: reduce(lambda v, f: f(v), funcs, x)    if funcs:        return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)    else:        raise ValueError('Composition of empty sequence not supported.')def letterbox_image(image, size):    '''resize image with unchanged aspect ratio using padding'''    iw, ih = image.size    w, h = size    scale = min(w / iw, h / ih)    nw = int(iw * scale)    nh = int(ih * scale)    image = image.resize((nw, nh), Image.BICUBIC)    new_image = Image.new('RGB', size, (128, 128, 128))    new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))    return new_imagedef rand(a=0, b=1):    return np.random.rand() * (b - a) + adef resize_3D_data(ima, size=(416, 416)):    dat = np.zeros([416, 416, 15])    for i in range(15):        slice = np.squeeze(ima[:, :, i])        re_slice = cv.resize(slice.astype('uint8'), size, interpolation=cv.INTER_AREA)        dat[:, :, i] = re_slice    return datdef random_crop(cell, boxes):    dx = random.randint(15, 20)    dy = random.randint(15, 20)    shape = cell.shape    nx = shape[0]    ny = shape[1]    boxes[:, [0, 2]] = boxes[:, [0, 2]] - dx    boxes[:, [1, 3]] = boxes[:, [1, 3]] - dy    new_cell = np.zeros_like(cell)    new_cell[0:int(nx - dx), 0:int(ny - dy)] = cell[dx:, dy:]    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    boxes = np.where(boxes < 0, 0, boxes)    return new_cell, boxesdef random_noise(cell, boxes):    image = Image.fromarray(cell.astype('uint8')).convert('RGB')    image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    seq = iaa.Sequential(        [            iaa.AdditiveGaussianNoise(scale=0.05 * 255),            iaa.LinearContrast((0.75, 1.5)),            iaa.GaussianBlur(sigma=(0, 4.0)),            iaa.Dropout(p=(0, 0.2)),            iaa.CoarseDropout(0.02, size_percent=0.5)        ], random_order=True    )    images_aug = seq.augment_images([image])[0]    new_cell = Image.fromarray(cv.cvtColor(images_aug, cv.COLOR_BGR2RGB))    return new_cell, boxesdef gray_level_crop(cell, boxes):    max_val = random.randint(80, 255) / 255    new_cell = cell * max_val    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, boxesdef rotate_box(box, M, shape):    # print(box)    y1, x1, y2, x2 = box    p1 = np.array([x1, y1, 1]).reshape((3, 1))    p2 = np.array([x1, y2, 1]).reshape((3, 1))    p3 = np.array([x2, y2, 1]).reshape((3, 1))    p4 = np.array([x2, y1, 1]).reshape((3, 1))    p1 = np.matmul(M, p1)    p2 = np.matmul(M, p2)    p3 = np.matmul(M, p3)    p4 = np.matmul(M, p4)    x1 = np.min([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    x2 = np.max([p1[0, 0], p2[0, 0], p3[0, 0], p4[0, 0]])    y1 = np.min([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    y2 = np.max([p1[1, 0], p2[1, 0], p3[1, 0], p4[1, 0]])    if x1 < 0:        x1 = 0    if x1 > shape[1]:        x1 = shape[1] - 1    if x2 < 0:        x2 = 0    if x2 > shape[1]:        x2 = shape[1] - 1    if y1 < 0:        y1 = 0    if y1 > shape[0]:        y1 = shape[0] - 1    if y2 < 0:        y2 = 0    if y2 > shape[0]:        y2 = shape[0] - 1    box = [y1, x1, y2, x2]    # print(box)    # print('--------------')    return boxdef random_rotate(cell, boxes, angle=45):    (h, w) = cell.shape    (cX, cY) = (w // 2, h // 2)    new_cell = imutils.rotate_bound(cell.astype('uint8'), angle)    M = cv.getRotationMatrix2D((cX, cY), -angle, 1.0)    cos = np.abs(M[0, 0])    sin = np.abs(M[0, 1])    # compute the new bounding dimensions of the image    nW = int((h * sin) + (w * cos))    nH = int((h * cos) + (w * sin))    # adjust the rotation matrix to take into account translation    M[0, 2] += (nW / 2) - cX    M[1, 2] += (nH / 2) - cY    new_boxes = []    for i in range(len(boxes)):        new_boxes.append(rotate_box(boxes[i], M, new_cell.shape))    if len(new_boxes) > 0:        new_boxes = np.array(new_boxes)    new_cell = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    new_cell = cv.cvtColor(np.asarray(new_cell), cv.COLOR_RGB2BGR)    return new_cell, new_boxesdef random_argument(data, cell, boxes):    # crop region ...    if rand() < .5:        cell, boxes = random_crop(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = random_noise(cell, boxes)    # add noise ...    if rand() < .5:        cell, boxes = gray_level_crop(cell, boxes)    # rotate ...    if rand() < .5:       cell, boxes = random_rotate(cell, boxes, random.randint(0, 90))    return cell, boxesdef pad_to_square(img, pad_value):    h, w, c = img.shape    dim_diff = np.abs(h - w)    # (upper / left) padding and (lower / right) padding    pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2    # Determine padding    pad = ((0, 0), (pad1, pad2), (0, 0)) if w <= h else ((pad1, pad2), (0, 0), (0, 0))    # Add padding    img = np.pad(img, pad, "constant", constant_values=pad_value)    return img, padif __name__ == '__main__':    dat = scio.loadmat(        '/home/xuxu/Data/CTC_Signal_Datasets/Processed/20200616_cell_signalmark_39frames/Green/653802_650142_0_675.mat')    cell = dat['signal'].astype('uint8')    boxe = dat['rects']    print('boxe', boxe)    # image = Image.fromarray(cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    # for x1, y1, x2, y2 in boxes:    #     cv.rectangle(image, (y1, x1), (y2, x2), (255, 255, 255), thickness=1)    # cv.imwrite('1.jpg', image)    new_cell, new_boxes = random_rotate(cell, boxe)    # new_cell, new_boxes = gray_level_crop(cell, boxe)    # print('new_boxes', new_boxes)    # new_boxes = np.where(new_boxes < 0, 0, new_boxes)    # print('new_boxes', new_boxes)    # image = Image.fromarray(new_cell.astype('uint8')).convert('RGB')    # image = cv.cvtColor(np.asarray(image), cv.COLOR_RGB2BGR)    for x1, y1, x2, y2 in new_boxes:        cv.rectangle(new_cell, (int(y1), int(x1)), (int(y2), int(x2)), (255, 255, 255), thickness=1)    cv.imwrite('1.jpg', new_cell)

其中图像加噪使用的是imgaug库

转载地址:http://ewhsz.baihongyu.com/

你可能感兴趣的文章
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>
MySQL中auto_increment有什么作用?(IT枫斗者)
查看>>
MySQL中B+Tree索引原理
查看>>
mysql中cast() 和convert()的用法讲解
查看>>
mysql中datetime与timestamp类型有什么区别
查看>>
MySQL中DQL语言的执行顺序
查看>>
mysql中floor函数的作用是什么?
查看>>
MySQL中group by 与 order by 一起使用排序问题
查看>>
mysql中having的用法
查看>>
MySQL中interactive_timeout和wait_timeout的区别
查看>>
mysql中int、bigint、smallint 和 tinyint的区别、char和varchar的区别详细介绍
查看>>
mysql中json_extract的使用方法
查看>>
mysql中json_extract的使用方法
查看>>
mysql中kill掉所有锁表的进程
查看>>
mysql中like % %模糊查询
查看>>
MySql中mvcc学习记录
查看>>
mysql中null和空字符串的区别与问题!
查看>>